On the Reasonable and Unreasonable Effectiveness of Mathematics in Classical and Quantum Physics
نویسنده
چکیده
The point of departure for this article is Werner Heisenberg’s remark, made in 1929: “It is not surprising that our language [or conceptuality] should be incapable of describing processes occurring within atoms, for . . . it was invented to describe the experiences of daily life, and these consist only of processes involving exceedingly large numbers of atoms. . . . Fortunately, mathematics is not subject to this limitation, and it has been possible to invent a mathematical scheme—the quantum theory [quantum mechanics]—which seems entirely adequate for the treatment of atomic processes.” The cost of this discovery, at least in Heisenberg’s and related interpretations of quantum mechanics (such as that of Niels Bohr), is that, in contrast to classical mechanics, the mathematical scheme in question no longer offers a description, even an idealized one, of quantum objects and processes. This scheme only enables predictions, in general, probabilistic in character, of the outcomes of quantum experiments. As a result, a new type of the relationships between mathematics and physics is established, which, in the language of Eugene Wigner adopted in my title, indeed makes the effectiveness of mathematics unreasonable in quantum but, as I shall explain, not in classical physics. The article discusses these new relationships between mathematics and physics in quantum theory and their implications for theoretical physics—past, present, and future.
منابع مشابه
Constacyclic Codes over Group Ring (Zq[v])/G
Recently, codes over some special finite rings especially chain rings have been studied. More recently, codes over finite non-chain rings have been also considered. Study on codes over such rings or rings in general is motivated by the existence of some special maps called Gray maps whose images give codes over fields. Quantum error-correcting (QEC) codes play a crucial role in protecting quantum ...
متن کاملHigh order perturbation study of the frustrated quantum Ising chain
In this paper, using high order perturbative series expansion method, the critical exponents of the order parameter and susceptibility in transition from ferromagnetic to disordered phases for 1D quantum Ising model in transverse field, with ferromagnetic nearest neighbor and anti-ferromagnetic next to nearest neighbor interactions, are calculated. It is found that for small value of the frustr...
متن کاملStability of additive functional equation on discrete quantum semigroups
We construct a noncommutative analog of additive functional equations on discrete quantum semigroups and show that this noncommutative functional equation has Hyers-Ulam stability on amenable discrete quantum semigroups. The discrete quantum semigroups that we consider in this paper are in the sense of van Daele, and the amenability is in the sense of Bèdos-Murphy-Tuset. Our main result genera...
متن کاملImplication of Quantum Effects on Non-Linear Propagation of Electron Plasma Solitons
We have studied the electron exchange-correlation effect on thecharacteristics of the two-component unmagnetized dense quantum plasma withstreaming motion. For this purpose, we have used the quantum hydrodynamic model(including the effects of a quantum statistical Fermi electron temperature) for studyingthe propagation of an electrostatic electron plasma waves in such th...
متن کاملCoherent Transport of Single Photon in a Quantum Super-cavity with Mirrors Composed of Λ-Type Three-level Atomic Ensembles
In this paper, we study the coherent transport of single photon in a coupled resonator waveguide (CRW) where two threelevel Λ-type atomic ensembles are embedded in two separate cavities. We show that it is possible to control the photon transmission and reflection coefficients by using classical control fields. In particular, we find that the total photon transmission and reflection are achieva...
متن کامل